Noise and Incomplete Data in Temporal Modeling Literature Review
Abstract
The missing traffic information has caused great obstacles and interference to farther inquiry, such equally traffic flow prediction, which affects the traffic authorities' judgment for the real traffic performance state of road network and the new control strategies. It is very disquisitional to select the imputation methods with skilful performance for maintaining the integrity and effectiveness of the traffic data. A large number of literatures have developed many methods to repair missing traffic information, nonetheless lacking systematic comparison of these methods and an overview of the state-of-the-art development in imputation methods. In this newspaper, extensive enquiry on imputation methods are sorted out and synthesized, the mechanism of missing traffic data is analyzed, and various algorithms in repairing missing data are systematically reviewed, highlighted some challenges and potential solutions. The purpose is to provide a structural diagram of the current recovery engineering for missing traffic information, clearly pointing out the advantages and disadvantages of these methods, and helping researchers to conduct better exploration on the incomplete traffic information.
Keywords
- Missing traffic data
- Imputation method
- Tensor decomposition
References
-
Tan, H., Feng, G., Feng, J., et al.: A tensor-based method for missing traffic data completion. Transp. Res. Part C Emerg. Technol. 28, fifteen–27 (2013)
-
Chen, X., He, Z., Dominicus, L.: A Bayesian tensor decomposition arroyo for spatiotemporal traffic data imputation. Transp. Res. Part C Emerg. Technol. 98, 73–84 (2019). https://doi.org/10.1016/j.trc.2018.11.003
-
Zhang, J., Wang, F.Y., Wang, 1000., et al.: Information-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 12(4), 1624–1639 (2011). https://doi.org/x.1109/TITS.2011.2158001
-
Chen, C., Wang, Y., Li, L., Hu, J., Zhang, Z.: The retrieval of intra-solar day trend and its influence on traffic prediction. Transp. Res. Role C Emerg. Technol. 22, 103–118 (2012). https://doi.org/x.1016/j.trc.2011.12.006
-
Al-Deek, H.M., Venkata, C., Chandra, S.R.: New algorithms for filtering and imputation of existent-fourth dimension and archived dual-loop detector information in I-four information warehouse. Transp. Res. Rec. J. Transp. Res. Board 1867, 116–126 (2004). https://doi.org/10.3141/1867-14
-
Qu, L., Li, L., Zhang, Y., Hu, J.: PPCA-based missing data imputation for traffic flow volume: a systematical approach. IEEE Trans. Intell. Transp. Syst. 10(3), 512–522 (2009). https://doi.org/10.1109/TITS.2009.2026312
-
Li, L., Li, Y., Li, Z.: Efficient missing data imputing for traffic period past considering temporal and spatial dependence. Transp. Res. Office C Emerg. Technol. 34(9), 108–120 (2013). https://doi.org/10.1016/j.trc.2013.05.008
-
Vlahogianni, E.I., Karlaftis, M.M., Golias, J.C.: Short-term traffic forecasting: where we are and where nosotros're going. Transp. Res. Part C Emerg. Technol. 43, iii–19 (2014)
-
Schafer, J.L.: Analysis of Incomplete Multivariate Data. CRC Press, Boca Raton (1997)
-
Buuren, S.V.: Flexible Imputation of Missing Data. CRC Printing, Boca Raton (2012)
-
Arteaga, F., Ferrer, A.: Dealing with missing data in MSPC: several methods, dissimilar interpretations, some examples. J. Chemom. 16(8–ten), 408–418 (2002)
-
Kondrashov, D., Ghil, M.: Spatio-temporal filling of missing points in geophysical information sets. Nonlinear Process. Geophys. 13(2), 151–159 (2006)
-
Sainani, K.50.: Dealing with missing data. PM&R 7(9), 990–994 (2015)
-
GarcÃa-Laencina, P.J., et al.: Pattern classification with missing data: a review. Neural Comput. Appl. nineteen(2), 263–282 (2010). https://doi.org/x.1007/s00521-009-0295-vi
-
Li, L., Li, Y., Li, Z.: Missing traffic data: comparing of imputation methods. IET Intell. Transp. Syst. 8(1), 51–57 (2014). https://doi.org/10.1049/iet-its.2013.0052
-
Tak, Southward., Woo, South., Yeo, H.: Data-driven imputation method for traffic data in sectional units of road links. IEEE Trans. Intell. Transp. Syst. 17(vi), 1762–1771 (2016). https://doi.org/10.1109/TITS.2016.2530312
-
Sunday, B., Ma, 50., et al.: An improved k-nearest neighbours method for traffic time series imputation. In: 2017 Chinese Automation Congress (CAC), pp. 7346–7351. IEEE (2017)
-
Zefreh, Yard.M., Torok, A.: Single loop detector data validation and imputation of missing information. Measurement 116, 193–198 (2018). https://doi.org/10.1016/j.measurement.2017.10.066
-
Zou, H., Yue, Y., Li, Q., Yeh, A.G.O.: An improved distance metric for the interpolation of link-based traffic data using kriging: a case study of a big-scale urban road network. Int. J. Geogr. Inf. Sci. 26, 667–689 (2012)
-
Shamo, B., Asa, E., Membah, J.: Linear spatial interpolation and analysis of annual boilerplate daily traffic data. J. Comput. Civil Eng. 29, 04014022 (2015)
-
Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. EEE Trans. Blueprint Anal. Mach. Intell. 35(1), 208–220 (2013)
-
Asif, Chiliad.T., Mitrovic, North., Dauwels, J., Jaillet, P.: Matrix and tensor based methods for missing data estimation in big traffic networks. IEEE Trans. Intell. Transp. Syst. 17(seven), 1816–1825 (2016). https://doi.org/ten.1109/TITS.2015.2507259
-
Ran, B., Tan, H., Wu, Y., Jin, P.J.: Tensor based missing traffic data completion with spatial-temporal correlation. Phys. Stat. Mech. Appl. 446, 54–63 (2016)
-
Goulart, J.H.1000., Kibangou, A.Y., Favier, Grand.: Traffic data imputation via tensor completion based on soft thresholding of Tucker core. Transp. Res. Office C Emerg. Technol. 85, 348–362 (2017). https://doi.org/x.1016/j.trc.2017.09.011
-
Chen, 10., He, Z., Wang, J.: Spatial-temporal traffic speed patterns discovery and incomplete information recovery via SVD-combined tensor decomposition. Transp. Res. Office C Emerg. Technol. 86, 59–77 (2018). https://doi.org/ten.1016/j.trc.2017.10.023
-
Payne, H.J., Helfenbein, Eastward.D., Knobel, H.C.: Development and testing of incident detection algorithms, volume two: enquiry methodology and detailed results. Federal Highway Administration, Washington, D.C. (1976)
-
Jacobson, 50.Due north., Nihan, N.L., Bough, J.D.: Detecting erroneous loop detector information in a state highway traffic management system. Transp. Res. Rec. (1287), 151–166 (1990)
-
Rubin, D.B.: Inference and missing data. Biometrika 63, 581–592 (1976)
-
Tang, J., Zhang, G., Wang, Y., Wang, H., Liu, F.: A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation. Transp. Res. Office C Emerg. Technol. 51, 29–40 (2015)
-
Duan, Y., Lv, Y., Liu, Y.L., Wang, F.Y.: An efficient realization of deep learning for traffic information imputation. Transp. Res. Part C Emerg. Technol. 72, 168–181 (2016)
-
Pigott, T.D.: A review of methods for missing data. Educ. Res. Eval. 7(iv), 353–383 (2001). https://doi.org/10.1076/edre.7.4.353.8937
-
Yin, W., Murray-Tuite, P., Rakha, H.: Imputing erroneous data of single-station loop detectors for nonincident conditions: comparison between temporal and spatial methods. J. Intell. Transp. Syst. 16(3), 159–176 (2012)
-
Xu, J.R., Li, X.Y., Shi, H.J.: Short-term traffic flow forecasting model under missing data. J. Comput. Appl. 30, 1117–1120 (2010)
-
Lee, South., Fambro, D.B.: Application of subset autoregressive integrated moving average model for short-term pike traffic volume forecasting. Transp. Res. Rec. J. Transp. Res. Board 1678, 179–188 (1999)
-
Castro-Neto, Thou., Jeong, Y.Southward., Jeong, K.Thousand., et al.: Online-SVR for curt-term traffic flow prediction under typical and singular traffic conditions. Skilful Syst. Appl. 36, 6164–6173 (2009). https://doi.org/10.1016/j.eswa.2008.07.069
-
Chiou, J.1000., Zhang, Y.C., Chen, W.H., et al.: A functional data approach to missing value imputation and outlier detection for traffic period data. Transp. B Transp. Dyn. 2(2), 106–129 (2014). https://doi.org/10.1080/21680566.2014.892847
-
Tan, H., Feng, J., Chen, Z., et al.: Low multilinear rank approximation of tensors and application in missing traffic data. Adv. Mech. Eng (2014). https://doi.org/10.1155/2014/157597
-
Anandkumar, A., Ge, R., Hsu, D., Kakade, S.Grand., Telgarsky, K.: Tensor decompositions for learning latent variable models. J. Mach. Acquire. Res. 15, 2773–2832 (2014)
-
Hitchcock, F.Fifty.: The expression of a tensor or a polyadic every bit a sum of products. J. Math. Phys. 6, 164–189 (1927). https://doi.org/10.1002/sapm192761164
-
Tucker, L.: Some mathematical notes on three-style gene assay. Psychometrika 31(iii), 279–311 (1966)
-
Carroll, J.D., Chang, J.J.: Assay of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika 35, 283–319 (1970)
-
Kolda, T.M., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(iii), 455–500 (2009). https://doi.org/x.1137/07070111X
-
Schifanella, C., Candan, One thousand.S., Sapino, 1000.Fifty.: Multiresolution tensor decompositions with style hierarchies. ACM Trans. Knowl. Discov. Information eight(2), ten (2014)
-
Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for incomplete information. Chemom. Intell. Lab. Syst. 106(1), 41–56 (2011)
-
Zhao, Q., Zhang, 50., Cichocki, A.: Bayesian CP factorization of incomplete tensors with automated rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1751–1763 (2015). https://doi.org/x.1109/TPAMI.2015.2392756
-
Wang, Y., Zheng, Y., Xue, Y.: Travel time interpretation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD International Conference on Noesis Discovery and Data Mining, KDD 2014, pp. 374–383 ACM (2014)
-
Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proceedings of the 25th International Conference on Machine Learning (ICML) (2008). https://doi.org/10.1145/1390156.1390267
-
Xiong, L., Chen, X., Huang, T.K., Schneider, J., Carbonell, J.1000.: Temporal collaborative filtering with Bayesian probabilistic tensor factorization. In: SIAM International Conference on Data Mining, pp. 211–222 (2010). https://doi.org/10.1137/ane.9781611972801.19
-
Rai, P., Wang, Y., Guo, S., Chen, One thousand., Dunson, D., Carin, 50.: Scalable Bayesian depression-rank decomposition of incomplete multiway tensors. In: Proceedings of the 31st International Conference on Motorcar Learning (ICML), vol. 32, pp. 1800–1808 (2014)
-
Tan, H., Wu, Y., Shen, B., Jin, P.J., Ran, B.: Curt-term traffic prediction based on dynamic tensor completion. IEEE Trans. Intell. Transp. Syst. 17(8), 2123–2133 (2016)
-
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)
-
Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(six), 717–772 (2009). https://doi.org/ten.1007/s10208-009-9045-5
-
Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(iv), 1956–1982 (2010). https://doi.org/x.1137/080738970
-
Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(ii), one–20 (2011). https://doi.org/ten.1088/0266-5611/27/two/025010
Author data
Affiliations
Corresponding author
Copyright data
© 2020 Springer Nature Singapore Pte Ltd.
About this newspaper
Cite this paper
Wu, P., Xu, 50., Huang, Z. (2020). Imputation Methods Used in Missing Traffic Data: A Literature Review. In: Li, K., Li, W., Wang, H., Liu, Y. (eds) Artificial Intelligence Algorithms and Applications. ISICA 2019. Communications in Computer and Information Scientific discipline, vol 1205. Springer, Singapore. https://doi.org/10.1007/978-981-15-5577-0_53
Download citation
- .RIS
- .ENW
- .BIB
-
DOI : https://doi.org/10.1007/978-981-xv-5577-0_53
-
Published:
-
Publisher Name: Springer, Singapore
-
Print ISBN: 978-981-15-5576-iii
-
Online ISBN: 978-981-fifteen-5577-0
-
eBook Packages: Computer Science Information science (R0)
Source: https://link.springer.com/chapter/10.1007/978-981-15-5577-0_53
0 Response to "Noise and Incomplete Data in Temporal Modeling Literature Review"
Post a Comment