Noise and Incomplete Data in Temporal Modeling Literature Review

Abstract

The missing traffic information has caused great obstacles and interference to farther inquiry, such equally traffic flow prediction, which affects the traffic authorities' judgment for the real traffic performance state of road network and the new control strategies. It is very disquisitional to select the imputation methods with skilful performance for maintaining the integrity and effectiveness of the traffic data. A large number of literatures have developed many methods to repair missing traffic information, nonetheless lacking systematic comparison of these methods and an overview of the state-of-the-art development in imputation methods. In this newspaper, extensive enquiry on imputation methods are sorted out and synthesized, the mechanism of missing traffic data is analyzed, and various algorithms in repairing missing data are systematically reviewed, highlighted some challenges and potential solutions. The purpose is to provide a structural diagram of the current recovery engineering for missing traffic information, clearly pointing out the advantages and disadvantages of these methods, and helping researchers to conduct better exploration on the incomplete traffic information.

Keywords

  • Missing traffic data
  • Imputation method
  • Tensor decomposition

References

  1. Tan, H., Feng, G., Feng, J., et al.: A tensor-based method for missing traffic data completion. Transp. Res. Part C Emerg. Technol. 28, fifteen–27 (2013)

    CrossRef  Google Scholar

  2. Chen, X., He, Z., Dominicus, L.: A Bayesian tensor decomposition arroyo for spatiotemporal traffic data imputation. Transp. Res. Part C Emerg. Technol. 98, 73–84 (2019). https://doi.org/10.1016/j.trc.2018.11.003

    CrossRef  Google Scholar

  3. Zhang, J., Wang, F.Y., Wang, 1000., et al.: Information-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 12(4), 1624–1639 (2011). https://doi.org/x.1109/TITS.2011.2158001

    CrossRef  Google Scholar

  4. Chen, C., Wang, Y., Li, L., Hu, J., Zhang, Z.: The retrieval of intra-solar day trend and its influence on traffic prediction. Transp. Res. Role C Emerg. Technol. 22, 103–118 (2012). https://doi.org/x.1016/j.trc.2011.12.006

    CrossRef  Google Scholar

  5. Al-Deek, H.M., Venkata, C., Chandra, S.R.: New algorithms for filtering and imputation of existent-fourth dimension and archived dual-loop detector information in I-four information warehouse. Transp. Res. Rec. J. Transp. Res. Board 1867, 116–126 (2004). https://doi.org/10.3141/1867-14

    CrossRef  Google Scholar

  6. Qu, L., Li, L., Zhang, Y., Hu, J.: PPCA-based missing data imputation for traffic flow volume: a systematical approach. IEEE Trans. Intell. Transp. Syst. 10(3), 512–522 (2009). https://doi.org/10.1109/TITS.2009.2026312

    CrossRef  Google Scholar

  7. Li, L., Li, Y., Li, Z.: Efficient missing data imputing for traffic period past considering temporal and spatial dependence. Transp. Res. Office C Emerg. Technol. 34(9), 108–120 (2013). https://doi.org/10.1016/j.trc.2013.05.008

    CrossRef  Google Scholar

  8. Vlahogianni, E.I., Karlaftis, M.M., Golias, J.C.: Short-term traffic forecasting: where we are and where nosotros're going. Transp. Res. Part C Emerg. Technol. 43, iii–19 (2014)

    CrossRef  Google Scholar

  9. Schafer, J.L.: Analysis of Incomplete Multivariate Data. CRC Press, Boca Raton (1997)

    CrossRef  Google Scholar

  10. Buuren, S.V.: Flexible Imputation of Missing Data. CRC Printing, Boca Raton (2012)

    CrossRef  Google Scholar

  11. Arteaga, F., Ferrer, A.: Dealing with missing data in MSPC: several methods, dissimilar interpretations, some examples. J. Chemom. 16(8–ten), 408–418 (2002)

    CrossRef  Google Scholar

  12. Kondrashov, D., Ghil, M.: Spatio-temporal filling of missing points in geophysical information sets. Nonlinear Process. Geophys. 13(2), 151–159 (2006)

    CrossRef  Google Scholar

  13. Sainani, K.50.: Dealing with missing data. PM&R 7(9), 990–994 (2015)

    CrossRef  Google Scholar

  14. García-Laencina, P.J., et al.: Pattern classification with missing data: a review. Neural Comput. Appl. nineteen(2), 263–282 (2010). https://doi.org/x.1007/s00521-009-0295-vi

    CrossRef  Google Scholar

  15. Li, L., Li, Y., Li, Z.: Missing traffic data: comparing of imputation methods. IET Intell. Transp. Syst. 8(1), 51–57 (2014). https://doi.org/10.1049/iet-its.2013.0052

    CrossRef  Google Scholar

  16. Tak, Southward., Woo, South., Yeo, H.: Data-driven imputation method for traffic data in sectional units of road links. IEEE Trans. Intell. Transp. Syst. 17(vi), 1762–1771 (2016). https://doi.org/10.1109/TITS.2016.2530312

    CrossRef  Google Scholar

  17. Sunday, B., Ma, 50., et al.: An improved k-nearest neighbours method for traffic time series imputation. In: 2017 Chinese Automation Congress (CAC), pp. 7346–7351. IEEE (2017)

    Google Scholar

  18. Zefreh, Yard.M., Torok, A.: Single loop detector data validation and imputation of missing information. Measurement 116, 193–198 (2018). https://doi.org/10.1016/j.measurement.2017.10.066

    CrossRef  Google Scholar

  19. Zou, H., Yue, Y., Li, Q., Yeh, A.G.O.: An improved distance metric for the interpolation of link-based traffic data using kriging: a case study of a big-scale urban road network. Int. J. Geogr. Inf. Sci. 26, 667–689 (2012)

    CrossRef  Google Scholar

  20. Shamo, B., Asa, E., Membah, J.: Linear spatial interpolation and analysis of annual boilerplate daily traffic data. J. Comput. Civil Eng. 29, 04014022 (2015)

    CrossRef  Google Scholar

  21. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. EEE Trans. Blueprint Anal. Mach. Intell. 35(1), 208–220 (2013)

    CrossRef  Google Scholar

  22. Asif, Chiliad.T., Mitrovic, North., Dauwels, J., Jaillet, P.: Matrix and tensor based methods for missing data estimation in big traffic networks. IEEE Trans. Intell. Transp. Syst. 17(seven), 1816–1825 (2016). https://doi.org/ten.1109/TITS.2015.2507259

    CrossRef  Google Scholar

  23. Ran, B., Tan, H., Wu, Y., Jin, P.J.: Tensor based missing traffic data completion with spatial-temporal correlation. Phys. Stat. Mech. Appl. 446, 54–63 (2016)

    CrossRef  Google Scholar

  24. Goulart, J.H.1000., Kibangou, A.Y., Favier, Grand.: Traffic data imputation via tensor completion based on soft thresholding of Tucker core. Transp. Res. Office C Emerg. Technol. 85, 348–362 (2017). https://doi.org/x.1016/j.trc.2017.09.011

    CrossRef  Google Scholar

  25. Chen, 10., He, Z., Wang, J.: Spatial-temporal traffic speed patterns discovery and incomplete information recovery via SVD-combined tensor decomposition. Transp. Res. Office C Emerg. Technol. 86, 59–77 (2018). https://doi.org/ten.1016/j.trc.2017.10.023

    CrossRef  Google Scholar

  26. Payne, H.J., Helfenbein, Eastward.D., Knobel, H.C.: Development and testing of incident detection algorithms, volume two: enquiry methodology and detailed results. Federal Highway Administration, Washington, D.C. (1976)

    Google Scholar

  27. Jacobson, 50.Due north., Nihan, N.L., Bough, J.D.: Detecting erroneous loop detector information in a state highway traffic management system. Transp. Res. Rec. (1287), 151–166 (1990)

    Google Scholar

  28. Rubin, D.B.: Inference and missing data. Biometrika 63, 581–592 (1976)

    MathSciNet  CrossRef  Google Scholar

  29. Tang, J., Zhang, G., Wang, Y., Wang, H., Liu, F.: A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation. Transp. Res. Office C Emerg. Technol. 51, 29–40 (2015)

    CrossRef  Google Scholar

  30. Duan, Y., Lv, Y., Liu, Y.L., Wang, F.Y.: An efficient realization of deep learning for traffic information imputation. Transp. Res. Part C Emerg. Technol. 72, 168–181 (2016)

    CrossRef  Google Scholar

  31. Pigott, T.D.: A review of methods for missing data. Educ. Res. Eval. 7(iv), 353–383 (2001). https://doi.org/10.1076/edre.7.4.353.8937

    CrossRef  Google Scholar

  32. Yin, W., Murray-Tuite, P., Rakha, H.: Imputing erroneous data of single-station loop detectors for nonincident conditions: comparison between temporal and spatial methods. J. Intell. Transp. Syst. 16(3), 159–176 (2012)

    CrossRef  Google Scholar

  33. Xu, J.R., Li, X.Y., Shi, H.J.: Short-term traffic flow forecasting model under missing data. J. Comput. Appl. 30, 1117–1120 (2010)

    Google Scholar

  34. Lee, South., Fambro, D.B.: Application of subset autoregressive integrated moving average model for short-term pike traffic volume forecasting. Transp. Res. Rec. J. Transp. Res. Board 1678, 179–188 (1999)

    CrossRef  Google Scholar

  35. Castro-Neto, Thou., Jeong, Y.Southward., Jeong, K.Thousand., et al.: Online-SVR for curt-term traffic flow prediction under typical and singular traffic conditions. Skilful Syst. Appl. 36, 6164–6173 (2009). https://doi.org/10.1016/j.eswa.2008.07.069

    CrossRef  Google Scholar

  36. Chiou, J.1000., Zhang, Y.C., Chen, W.H., et al.: A functional data approach to missing value imputation and outlier detection for traffic period data. Transp. B Transp. Dyn. 2(2), 106–129 (2014). https://doi.org/10.1080/21680566.2014.892847

    CrossRef  Google Scholar

  37. Tan, H., Feng, J., Chen, Z., et al.: Low multilinear rank approximation of tensors and application in missing traffic data. Adv. Mech. Eng (2014). https://doi.org/10.1155/2014/157597

    CrossRef  Google Scholar

  38. Anandkumar, A., Ge, R., Hsu, D., Kakade, S.Grand., Telgarsky, K.: Tensor decompositions for learning latent variable models. J. Mach. Acquire. Res. 15, 2773–2832 (2014)

    MathSciNet  MATH  Google Scholar

  39. Hitchcock, F.Fifty.: The expression of a tensor or a polyadic every bit a sum of products. J. Math. Phys. 6, 164–189 (1927). https://doi.org/10.1002/sapm192761164

    CrossRef  MATH  Google Scholar

  40. Tucker, L.: Some mathematical notes on three-style gene assay. Psychometrika 31(iii), 279–311 (1966)

    MathSciNet  CrossRef  Google Scholar

  41. Carroll, J.D., Chang, J.J.: Assay of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika 35, 283–319 (1970)

    CrossRef  Google Scholar

  42. Kolda, T.M., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(iii), 455–500 (2009). https://doi.org/x.1137/07070111X

    MathSciNet  CrossRef  MATH  Google Scholar

  43. Schifanella, C., Candan, One thousand.S., Sapino, 1000.Fifty.: Multiresolution tensor decompositions with style hierarchies. ACM Trans. Knowl. Discov. Information eight(2), ten (2014)

    CrossRef  Google Scholar

  44. Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for incomplete information. Chemom. Intell. Lab. Syst. 106(1), 41–56 (2011)

    CrossRef  Google Scholar

  45. Zhao, Q., Zhang, 50., Cichocki, A.: Bayesian CP factorization of incomplete tensors with automated rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1751–1763 (2015). https://doi.org/x.1109/TPAMI.2015.2392756

    CrossRef  Google Scholar

  46. Wang, Y., Zheng, Y., Xue, Y.: Travel time interpretation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD International Conference on Noesis Discovery and Data Mining, KDD 2014, pp. 374–383 ACM (2014)

    Google Scholar

  47. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proceedings of the 25th International Conference on Machine Learning (ICML) (2008). https://doi.org/10.1145/1390156.1390267

  48. Xiong, L., Chen, X., Huang, T.K., Schneider, J., Carbonell, J.1000.: Temporal collaborative filtering with Bayesian probabilistic tensor factorization. In: SIAM International Conference on Data Mining, pp. 211–222 (2010). https://doi.org/10.1137/ane.9781611972801.19

  49. Rai, P., Wang, Y., Guo, S., Chen, One thousand., Dunson, D., Carin, 50.: Scalable Bayesian depression-rank decomposition of incomplete multiway tensors. In: Proceedings of the 31st International Conference on Motorcar Learning (ICML), vol. 32, pp. 1800–1808 (2014)

    Google Scholar

  50. Tan, H., Wu, Y., Shen, B., Jin, P.J., Ran, B.: Curt-term traffic prediction based on dynamic tensor completion. IEEE Trans. Intell. Transp. Syst. 17(8), 2123–2133 (2016)

    CrossRef  Google Scholar

  51. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    MathSciNet  CrossRef  Google Scholar

  52. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(six), 717–772 (2009). https://doi.org/ten.1007/s10208-009-9045-5

    MathSciNet  CrossRef  MATH  Google Scholar

  53. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(iv), 1956–1982 (2010). https://doi.org/x.1137/080738970

    MathSciNet  CrossRef  MATH  Google Scholar

  54. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(ii), one–20 (2011). https://doi.org/ten.1088/0266-5611/27/two/025010

    MathSciNet  CrossRef  MATH  Google Scholar

Download references

Author data

Affiliations

Corresponding author

Correspondence to Lunhui Xu .

Copyright data

© 2020 Springer Nature Singapore Pte Ltd.

About this newspaper

Verify currency and authenticity via CrossMark

Cite this paper

Wu, P., Xu, 50., Huang, Z. (2020). Imputation Methods Used in Missing Traffic Data: A Literature Review. In: Li, K., Li, W., Wang, H., Liu, Y. (eds) Artificial Intelligence Algorithms and Applications. ISICA 2019. Communications in Computer and Information Scientific discipline, vol 1205. Springer, Singapore. https://doi.org/10.1007/978-981-15-5577-0_53

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI : https://doi.org/10.1007/978-981-xv-5577-0_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5576-iii

  • Online ISBN: 978-981-fifteen-5577-0

  • eBook Packages: Computer Science Information science (R0)

joynercomys1952.blogspot.com

Source: https://link.springer.com/chapter/10.1007/978-981-15-5577-0_53

0 Response to "Noise and Incomplete Data in Temporal Modeling Literature Review"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel